SubmitYahoo Febri Irawanto - Gudang ilmu: mekanik otomotif

Maxsimal Sosial Comunity
Tampilkan postingan dengan label mekanik otomotif. Tampilkan semua postingan
Tampilkan postingan dengan label mekanik otomotif. Tampilkan semua postingan

Sabtu, 23 Oktober 2010

Sejarah Mesin Diesel

Penemu mesin diesel (mesin minyak aslinya) adalah Rudolf Christian Karl Diesel, seorang insinyur berkebangsaan Jerman yg lahir di Paris 1858. Mesin ciptaannya ini sangat-sangat revolusioner, sudah menggunakan bahan bakar nabati, seperti minyak kacang dan minyak ganja, ketimbang bahan bakar fossil (bensin cs).

Padahal jaman itu (akhir abad 19 dan awal abad 20) mana ada orang mikir krisis energi minyak, apalagi global warming.

Sedemikian hebatnya itu mesin, membuat pesaing2nya di dunia otomotif gigit jari. Hingga di bulan September 1913, Diesel hilang secara misterius dari kabin kamarnya di kapal SS Dresden saat bepergian dari Jerman ke Inggris. Baru lima hari kemudian mayatnya ditemukan terapung di Sungai Scheldt (Jerman). Tak seorang pun bisa menyibak misteri di balik kematian Diesel tersebut.

Beberapa tahun kemudian, tepatnya tahun 1937 di Jepang, berdirilah sebuah pabrik mesin bernama Tokyo Jidosha Kogyo Company yg belakangan berganti nama jadi Isuzu, yg line product-nya adalah Mesin Diesel! Konon salah seorang murid/asisten Diesel berhasil mengcopy seluruh desain rancang bangun mesin tersebut dan mengembangkannya di Jepang atas perintah Kaisar Tenno Haika Hirohito u/ menjalankan mesin perangnya di Asia Pasifik.

Selama Perang Dunia II, Jepang membumi hanguskan semua sumur minyak milik kolonial Belanda, Inggris dan Perancis di Asia Tenggara. Namun, di sisi lain, Jepang juga memerintahkan anak jajahannya u/ menanam jarak pagar, yg bijinya diperas u/ dijadikan biodiesel yg menggerakkan tank dan kapal perang mereka.

Balatentara Jepang dgn mesin perang bermesin dieselnya nyaris tak terkalahkan oleh Amerika Serikat. Hanya 4 buah bom atom di Hiroshima dan Nagasaki lah yg mampu menghentikan laju gerak pasukan bersepatu karet tersebut melibas Asia-Pasifik. Sementara Jendral Douglas MacArthur tergopoh-gopoh balik menyerang dengan risiko kekurangan suplai minya bensin di sepanjang jalur penyerangannya di Pasifik Selatan, yg boleh dibilang mendahulukan merebut sumur-sumur minyak di Papua, Sulawesi dan Kalimantan!

Makanya jangan heran kenapa mesin diesel masih berbahan bakar solar (temannya bensin khan), bukan minyak jarak atau minyak kelapa sawit. Semua lantaran pelaku industri minyak tidak mau rugi dan digulung oleh petani kacang, kelap asawit dan jarak pagar!

Pada saat menerima hak paten atas mesin ciptaannya di Pekan Raya Paris 1912, Rudolf Diesel menyampaikan pidato yg sangat-sangat berarti di era Global Warming saat ini:

Der Gebrauch von Pflanzenöl als Krafstoff mag heute unbedeuntend sein. Aber derartige Produkte können im Laufe der Zeit obenso wichtig werden wie Petroleum und diese Kohle-Teer-Produkte von heute.” (Pemakaian minyak nabati sebagai bahan bakar untuk saat ini sepertinya tidak berarti, tetapi pada saatnya nanti akan menjadi penting, sebagaimana minyak bumi dan produk tir-batubara saat sekarang).

Jumat, 15 Oktober 2010

Perbedaan Ban Radial Dan Ban Bias

Perbedaan Ban Radial Dan Ban Bias





Perbedaan mendasar dari Ban Bias dan Radial terletak pada susunan benang yang mengikat, berikut perbedaan detailnya :

Perbedaan ban bias dan ban radial
Ban pada dasarnya diklasifikasikan ke dalam dua struktur sebagai berikut:

Struktur Bias
Ban dengan struktur bias adalah yang paling banyak dipakai. Dibuat dari banyak lembar cord yang digunakan sebagai rangka (frame) dari ban. Cord ditenun dengan cara zig-zag membentuk sudut 40 sampai 65 derajat sudut terhadap keliling lingkaran ban.

Struktur Radial
Untuk ban radial, konstruksi carcass cord membentuk sudut 90 derajat sudut terhadap keliling lingkaran ban. Jadi dilihat dari samping konstruksi cord adalah dalam arah radial terhadap pusat atau crown dari ban. Bagian dari ban berhubungan langsung dengan permukaan jalan diperkuat oleh semacam sabuk pengikat yang dinamakan "Breaker" atau "Belt". Ban jenis ini hanya menderita sedikit deformasi dalam bentuknya dari gaya sentrifugal, walaupun pada kecepatan tinggi. Ban radial ini juga mempunyai "Rolling Resistance" yang kecil.

Struktur Ban Bias dan Ban Radial

Struktur Ban Bias dan Ban Radial

Dari hasil pengembangan hingga saat ini struktur yang biasa digunakan oleh produsen ban adalah sbb:



1. Tread/Telapak Ban:

Tread/Telapak Ban adalah bagian dari ban yang kontak langsung dengan permukaaan jalan. Bahan yang digunakan tergantung dari utilitas kendaraan sehingga berpengaruh terhadap ketahanan ban, daya cengkeram dan juga dalam melakukan maneuver.
2. Steel Belts:
Menjaga kekokohan struktur ban dan juga menjaga keamanan dari benda-benda yang dapat menusuk permukaan ban.
3. Spiral Layer:
Lapisan ini berfungsi agar ban lebih tahan dan lebih mudah melakukan maneuver.
4. Shoulder:
Shoulder bagian yang paling tebal pada sebuah ban yang berfungsi melindungi ban dari guncangan maupun benda-benda berbahaya dari luar.
5. Sidewall:
Sidewall adalah bagian yang paling lentur pada sebuah ban. Faktor kenyamanan berkendara pada sebuah ban di dapat dari bagian ini.
6. Plycord:
Plycord adalah bagian utama sebuah ban yang melapisi bagian dalam pada sidewall dan juga bagian dalam telatak ban dari tekanan udara dari dalam ban, beban kendaraan dan juga goncangan dari luar.
7. Bead Filler:
Bead Filler lapisan pengisi yang membuat ban lebih tahan dan memudahkan kendaraan dalam melakukan maneuver.
8. Bead Wires:
Lapisan kawat yang berfungsi menahan ban tetap pada tempatnya pada velg/rim.
9. Chafer
Bagian yang melindungi plycord dibagian bead dari panas yang terjadi karena gesekan bagian bead dengan velg/rim.

Dari keseluruhan Struktur ban diatas yang paling banyak mempengaruhi ketahan, maneuverability dan juga factor keiritan bahan bakar adalah PLYCORD. Dari ban yang beredar sekarang struktur plycord dapat dibagi sebagai berikut:




1. Radial
Struktur lapisan Plycord pada Ban Radial dari Bead dalam Ke Bead luar saling tegak lurus.
Disamping lapisan plycord masih ada lapisan steel belts.
2. Bias

Lapisan untuk jenis ini plycord diletakkan secara diagonal secara bersilangan, tidak ada lapisan tambahan pada konstruksi Bias ini.

Kamis, 14 Oktober 2010

Prinsip Kerja Motor 4 Tak / 4 langkah / 4 Stroke

Mengapa mesin disebut 4 tak, karena memang ada 4 langkah. Berikut adalah detail dari setiap proses.



1. Intake Disebut langkah intake karena langkah pertama adalah menghisap melalui piston dari karburator. Pasokan bahan bakar tidak cukup hanya dari semprotan karburator. Cara kerjanya adalah sbb. Piston pertama kali berada di posisi atas (atau disebut Titik Mati Atas). Lalu piston menghisap bahan bakar yang sudah disetting/dicampur antara bensin dan udara di karburator. Piston lalu mundur menghisap bahan bakar. Untuk membuka, diperlukan klep atau valve inlet yang akan membuka pada saat piston turun/menghisap ke arah bawah. Gerakan valve atau inlet diatur oleh camshaft secara mekanis. Yakni, camshaft mengatur besaran bukaan klep dengan cara menekan tuas klep. Camshaft sendiri digerakan oleh rantai keteng yang disambungkan antara camshaft ke crankshaft. Untuk detilnya, lihat gambar berikut. Perhatikan bahwa A adalah Intake Valve (klep masuk bahan bakar) dan klep ini ditekan (membuka) karena I (camshaft) menekan valve A. Dengan demikian, pada saat piston turun, maka A terbuka sekaligus bahan bakar ditarik masuk ke ruang bakar. A akan menutup sampai batas tertentu sebelum langkah kedua : kompresi. Rantai keteng tidak terlihat karena akan sulit digambarkan di atas, tetapi crankshaft (P) terhubung dengan camshaft (I). Beberapa mobil Eropa seperti Mercedez menggunakan rantai sebagai penghubung antara crankshaft dan camshaft, tetapi umumnya di mobil Jepang menggunakan belt yang kita kenal sebagai timing belt. 2. Kompresi
Langkah ini adalah lanjutan dari langkah di atas. Setelah piston mencapai titik terbawah di tahapan intake, lalu valve intake tertutup, dan dilakukan proses kompresi. Yakni, bahan bakar yang sudah ada di ruang bakar dimampatkan. Ruangan sudah tertutup rapat karena kedua valve (intake dan exhaust) tertutup. Proses ini terus berjalan sampai langkah berikut yakni meledaknya busi di langkah ke 3.

3. Combustion (Pembakaran)

Tahap berikut adalah busi pada titik tertentu akan meledak setelah PISTON BERGERAK MENCAPAI TITIK MATI ATAS DAN MUNDUR BEBERAPA DERAJAT. Jadi, busi tidak meledak pada saat piston di titik paling atas (disebut titik 0 derajat), tetapi piston mundur dulu, baru meledak. Hal ini karena untuk menghindari adanya energi yang terbuang sia-sia karena pada saat piston di titik mati atas, masih ada energi laten (yang tersimpan akibat dorongan proses kompresi). Jika pada titik 0 derajat busi meledak, bisa jadi piston mundur tetapi mengengkol crankshaft ke arah belakang (motor mundur ke belakang, bukan memutar roda ke depan).

Setelah proses pembakaran, maka piston memiliki energi untuk mendorong crankshaft yang nantinya akan dialirkan melalui gearbox dan sproket, rantai, dan terakhir ke roda.

4. Exhaust (Pembuangan)

Langkah terakhir ini dilakukan setelah pembakaran. Piston akibat pembakaran akan terdorong hingga ke titik yang paling bawah, atau disebut Titik Mati Bawah. Setelah itu, piston akan mendorong ke depan dan klep exhaust membuka sementara klep intake tertutup. Oleh karena itu, maka gas buang akan terdorong masuk ke lubang Exhaust Port (atau kita bilang lubang sambungan ke knalpot). Dengan demikian, maka kita bisa membuang semua sisa gas buang akibat pembakaran. Dan setelah bersih kembali, lalu kita akan masuk lagi mengulangi langkah ke 1 lagi.

Share

Twitter Delicious Facebook Digg Stumbleupon Favorites More